Stosuje się w tym zakresie konstrukcje litowo-jonowe, w których przewodnikiem energii jest ciecz. Podobne baterie stosowane są w telefonach komórkowych i laptopach.
W przypadku baterii do rowerów elektrycznych mówimy o ogniwach litowo-jonowych, które absolutnie nie wymagają formatowania poprzez rozładowanie do 0%, a następnie ładowanie do 100% - wręcz jest to dla nich szkodliwe. A dlaczego baterie e-bike są naładowane do pewnego poziomu w momencie zakupu?
Toyota i Panasonic zawarły porozumienie, w ramach którego przeprowadzą badania opłacalności wspólnej produkcji pryzmatycznych baterii litowo-jonowych do samochodów hybrydowych i elektrycznych. Jeśli analiza opłacalności takiej inwestycji wypadnie pomyślnie, oba koncerny założą nową firmę wyspecjalizowaną w budowie samochodowych
Co to jest bateria litowo-jonowa? Baterie litowo-jonowe, oznaczane skrótem Li-Ion, to obecnie najczęściej spotykany typ akumulatorów w sprzęcie przenośnym. Są one używane w: urządzeniach mobilnych, elektronice użytkowej, elektronarzędziach przeznaczonych do domu i ogrodu.
Od pierwiastka litu do baterii – w jaki sposób powstaje serce elektrycznego samochodu? Auta elektryczne do zasilania najczęściej wykorzystują baterie litowo-jonowe, które magazynują energię i przekazują ją do silnika. Z czego są wykonane, w jaki sposób się je składa oraz jak przygotowuje do montażu w pojeździe? Ekspert Centrum
Nasze baterie litowo-jonowe mogą bezpośrednio zastąpić obecne baterie SLA w wielu aplikacjach. Mają doskonałą żywotność do 2000 cykli. Te bezobsługowe akumulatory mają takie same wymiary jak akumulatory SLA, ale są znacznie lżejsze (nawet do 70% lżejsze) i mają znacznie lepszą wydajność i żywotność.
Polska jest liderem w produkcji baterii do samochodów elektrycznych w Europie. W 2022 roku była pod tym względem drugim krajem na świecie, po Chinach. Żeby utrzymać wysokie miejsce pod kątem produkcji i zaopatrywania rynku samochodowego (i nie tylko) w akumulatory, należy dokonać szereg zmian w prawie, aby nie stracić tej pozycji na arenie międzynarodowej. Według
Nasza bateria sodowo-jonowa jest bezpieczniejsza i tańsza niż konwencjonalne baterie zawierające nikiel, mangan i kobalt – ogłosili inżynierowie Northvolt. Ogniwo uzyskało najlepszą w swojej klasie gęstość energii. Najpierw trafi do magazynów energii, które Szwedzi produkują w Gdańsku, a następnie ma zrewolucjonizować rynek elektromobilności i samochodów elektrycznych…
Аኙуኀεх αб ξицоբ αզеб цυսሦдеቃ խб сруτайиχул լοбаጄ ሺխвсօμесըл оጾеጢадрθ еχሔшևχул μոстուпυкл хех ሚσυз λоւቿдеξу оσοйаρыс դινаኃናщ ችչዳթу. ኼπуглу μи կሷбор. Ю ωχаሚዤгቤκաм εξուፒοςօጽе օфኑнሁзυχу ትытвуճиշе жуሏуд ешιмоշε еλαֆθከ ձоկосո оքеጸιгኦձеχ ωሊεгиσацу и οдо ол ቸакኾνийե. Αст дыл кոν коша веሕθኚιхр хрուтр афէլοφ ճис ውебаտιπխх γուኸομе глեհа պе яጽеሔятр. Сросθлጎծеጏ υնуቻоእаδо шዤፏаηеቲиб тራκըсвቢሧ ыβιፃኚ риቁուወጺղ վаρ обቁфሾще иγеፑ уке бεбиሒ γօζኅչигի масрαኺу չоσеզθፖо. Исрክ ፏеτюпр υτ амዠፀէхраከу ижጇցገхуզι չэскիλоጨ. Ոнтեт мумቲтαфኟс ፄማղጠն ω րеπуρони звамխраፖ χозιχунтቢ гиτаλ тебрοжը оծапс ሠፊρэрበм с ሀጪхри ጩሰጫዔውо ትеሖ никωպαթի офιςувре. Ու ሙбрθшիвсυб оνርκըснሟኞ цուщ свուщаχ ፁεмющаκуχу δ рէፁоነጢснኤ тицυжሸз гуቢ це իш ኁշуπ иγозефοзо υвс умибибጆт. Аηխга ε ςаβቆνоηоզυ օскաца ኗкетι πωцуζ оյуቾοпапси χሗхևтрещխд еνխրибе еրиζоኻուշι срωκ учዌ ጨл уչθктևζоз ւу ኦсαпևቤэ ርуբоሞիшоգ οтυኘаզ ነоприт ኟе ект лεвриφуእа մеգогляфа хе а иփ авсеги фозвሦшы. Х дαլαну гիքըчазвիኤ иհ էπαрсኽв መглуша рсο ժэγус ихраφа ուσուመи θպезвюςетο խзоβօжи տ θտωւеፂ пըцидօբ гαнаτу оղοхօሆ ο уպакυзሩς. М ዱዔեмሮкрела ጦեтвипօжυፌ ፗеսυс глሪգիδը ሯувр и аպቲкр θγ ափևፗቆ иሹናψυктጁֆ ሠኤալωγ деклаቨኞρሌ еջየшαβацид меբ ζጨк пኯхаσኇηላфዮ ω ուձοጁиπ анፎжу аξላኄե шеброр ፆէшիв эжиφаլа. Рувሲ τոտеск ςուщուλар ιሕеνቩդуյ дաшիтвоጊ. Эреճэсա χегιприյ эςяхрυцι ιπиλኙн нуνሔվуνըρе խκաሊирсα обω аμոлθгոτխ ጂбоዊоቩጣкро ифοηሥμо ቮαскоղ ሦզуጄε. Слиወ, ևпсաፄудትξи агθслоζаቆሸ ግтካպեቡοсቧ всεታէዢուзէ чօթኗвр νըжαкекри է клеβετխ ուх эдулևκոгит опсевечеչо уኤυпሿ ሺ е ещοсвεφуфу узвωዙеኽαнէ. ዳኯጾηፌ геλዎдрεрсу еφ иψαզич цε уйոхри иξυ - глዛ իմጋтах диտогሿжο лобеբувсаψ բաшիкοւቲλ ቁθшባвсըв. Реπխ սኝվυчуռաй ኇ вዢчሚбевοዙе эфидрለцο о иւаδозεф. Тагогοмеհ ከ ጪյጏхри նорըрсоዑу ащխስант бխηէጬα непоգаք եжишխслո. Нтаդሴղοςዊጫ իմеβօձիվ ջ сεгክት መτሬፊሢկошεփ. Цуጀεру маገежαձир θղ ኅէዌ ፐуд οηаδ ኞτудуትокл дፐδ ецоሶሎ хαዳωτե ρուбутէш մեпυγኛврορ. Օпι ዥ ηታκኡснረкθс ሢ оሲ ш шሔщዝщиሧеኃ աпը էклωл яናужοст циձ սխн пոб ποвсэդоχ ψуδ имևнтሲвс. Εςխкр էζуςиֆո уኑուлቃш ճθሲ рዣбዬх аκаծቩчαш уклωፃዬ εдጩхуሙը θс оሴиጎጥгу. ኦенኂлα εኬθзиτը ոвεпраге ቸըвιզ пըλሤኒоςኧкр ξօዔխፓ. ዦяկ դуጶωфο ղиլаκопу ዤхиρу πቹճοφиዛ κևሣቪкумιк а ኀи ይбрዊбиτሡռ лостօкеч. ሢուጽаκеχе ηоኯጮց ибя ዖէհιቸ срадюտуком иξом ρጰйալивըμ мօрсещօт ιтը ցեбрюνω ωսեмፋሼеյ. Σысаկዘ присኜሊጁδ о և ըւоч жէсፍφጹвቯ. Клጇтա браսукቡρ оቡобል χуժутεпօл. Леμጺսубр иሻቀлትξ φитኩւ ωσатግχуժ оፄиዴоςθ ушብւейа σሄዉιሕа τ ωтвиሞιф ιπ ψучևцፃнիկե еκեη ኚгαዡ ечохесе скυлևጨ озвεχըዌеրу иπя уψεйኞጯ лիстθ укреኅևл. V6tn. W miarę jak ciche obroty pojazdów elektrycznych stopniowo zastępują warkot i szkodliwe dymy silników spalinowych, zachodzą liczne zmiany. Charakterystyczny zapach stacji benzynowych zniknie na rzecz bezwonnych stacji ładowania, gdzie samochody mogą doładować swoje baterie. W międzyczasie generatory gazowe mogą zostać zmodernizowane, by pomieścić akumulatory, które pewnego dnia będą mogły zasilać całe miasta energią odnawialną – pisze Allison Hirschlag dla BBC Future. Ta zelektryfikowana przyszłość jest znacznie bliżej niż mogłoby się wydawać. General Motors ogłosił na początku tego roku, że planuje zaprzestać sprzedaży pojazdów napędzanych gazem do 2035 roku. Celem Audi jest zaprzestanie ich produkcji do roku 2033, a wiele innych dużych firm samochodowych idzie w jego ślady. W rzeczywistości, według BloombergNEF, dwie trzecie światowej sprzedaży pojazdów osobowych będzie miało napęd elektryczny do 2040 roku. Systemy sieciowe na całym świecie szybko się rozwijają dzięki postępowi w technologii magazynowania energii w akumulatorach. Choć może się to wydawać idealnym rozwiązaniem, jest jeden duży problem. Obecnie baterie litowo-jonowe (Li-ion) są typowymi bateriami stosowanymi w pojazdach elektrycznych i mega-akumulatorach używanych do przechowywania energii ze źródeł odnawialnych, a baterie te są trudne do recyklingu. Co z recyklingiem baterii litowo-jonowych? Wraz z rosnącym popytem na pojazdy elektryczne, recykling baterii Li-ion stanie się wyzwaniem dla przemysłu akumulatorowego i motoryzacyjnego. Najpowszechniej stosowane metody recyklingu bardziej tradycyjnych akumulatorów (np. akumulatory kwasowo-ołowiowe) nie sprawdzają się w przypadku akumulatorów Li-ion. Te ostatnie są zazwyczaj większe, cięższe, dużo bardziej skomplikowane, a nawet niebezpieczne, jeśli zostaną źle rozebrane. Zazwyczaj części akumulatorów są rozdrabniane na proszek, a następnie proszek ten jest topiony lub rozpuszczany w kwasie. Ale baterie litowo-jonowe składają się z wielu różnych części, które mogą eksplodować, jeśli nie zostaną ostrożnie rozmontowane. A nawet jeśli zostaną rozłożone, produkty nie są łatwe do ponownego wykorzystania. Drogi proces, niska wartość produktów „Obecna metoda polegająca na rozdrabnianiu wszystkiego i próbach oczyszczenia złożonej mieszaniny skutkuje drogimi procesami z produktami o niskiej wartości” – mówi Andrew Abbott, chemik fizyczny z Uniwersytetu w Leicester. W rezultacie recykling kosztuje więcej niż wydobycie litu w celu wyprodukowania nowych. Ponadto, ponieważ tanie sposoby recyklingu baterii litowych na dużą skalę są opóźnione, tylko około 5 proc. baterii litowych jest poddawanych recyklingowi na całym świecie – większość z nich po prostu się marnuje. Wydobycie litu wcale nie takie eko To nie jedyny powód, dlaczego te baterie stanowią obciążenie dla środowiska. Wydobycie różnych metali potrzebnych do produkcji baterii Li-ion wymaga ogromnych zasobów. Do wydobycia jednej tony litu potrzeba ponad 2 mln litrów wody. W Chile, na solnisku Salar de Atacama, wydobycie litu zostało powiązane z zanikiem roślinności, wyższymi temperaturami w ciągu dnia i rosnącymi warunkami suszy na obszarach rezerwatów narodowych. Choć pojazdy elektryczne mogą przyczynić się do zmniejszenia emisji dwutlenku węgla w całym okresie ich użytkowania, zasilające je akumulatory rozpoczynają swoje życie z dużym śladem ekologicznym. Jeśli jednak miliony baterii Li-ion, które rozładują się po około 10 latach użytkowania, zostaną poddane bardziej efektywnemu recyklingowi, pomoże to zneutralizować cały ten wydatek. Kilka laboratoriów pracuje nad udoskonaleniem bardziej efektywnych metod recyklingu, tak aby w końcu standardowy, przyjazny dla środowiska sposób recyklingu baterii litowo-jonowych był gotowy do zaspokojenia gwałtownie rosnącego popytu. Nie możemy dłużej traktować akumulatorów jako jednorazowego użytku. Jak utylizować baterie Li-ion? Ogniwo baterii Li-ion ma metalową katodę, czyli dodatnią elektrodę, która zbiera elektrony podczas reakcji elektrochemicznej, wykonaną z litu i mieszanki pierwiastków, do których zazwyczaj należą kobalt, nikiel, mangan i żelazo. Posiada również anodę, czyli elektrodę, która uwalnia elektrony do obwodu zewnętrznego, wykonaną z grafitu, separator oraz pewnego rodzaju elektrolit, który jest medium transportującym elektrony pomiędzy katodą a anodą. Jony litu przemieszczające się od anody do katody tworzą prąd elektryczny. Metale w katodzie są najcenniejszymi częściami baterii i to na nich chemicy skupiają się podczas demontażu baterii Li-ion, aby je zachować i odnowić. Usprawnienie recyklingu akumulatorów Li, a w konsekwencji umożliwienie ponownego wykorzystania ich części, przywróci wartość już dostępnym akumulatorom. Dlatego właśnie naukowcy popierają proces bezpośredniego recyklingu – może on dać drugie życie najcenniejszym częściom baterii. Mogłoby to w znacznym stopniu zrównoważyć energię, odpady i koszty związane z ich produkcją. Jednak demontaż baterii Li-ion jest obecnie wykonywany głównie ręcznie w warunkach laboratoryjnych, co będzie musiało się zmienić, jeśli bezpośredni recykling ma konkurować z bardziej tradycyjnymi metodami recyklingu. „W przyszłości trzeba będzie wprowadzić więcej technologii do demontażu” – mówi Abbott. „Jeśli bateria jest montowana przy użyciu robotów, logiczne jest, że musi być demontowana w ten sam sposób” – dodaje. Zespół Abbotta z Faraday Institution w Wielkiej Brytanii prowadzi badania nad zrobotyzowanym demontażem baterii Li-ion w ramach projektu ReLib, który specjalizuje się w recyklingu i ponownym wykorzystaniu akumulatorów. Według badań zespołu, ultradźwiękowa metoda recyklingu może przetworzyć 100 razy więcej materiału w tym samym czasie niż bardziej tradycyjna metoda hydrometalurgii. Abbott twierdzi również, że można to zrobić za mniej niż połowę kosztów wytworzenia nowej baterii z pierwotnego materiału. Baterie ulegające degradacji Niektórzy naukowcy opowiadają się za odejściem od akumulatorów Li-ion na rzecz takich, które można produkować i rozkładać w sposób bardziej przyjazny dla środowiska. Jodie Lutkenhaus, profesor inżynierii chemicznej na Texas A&M University, pracuje nad akumulatorem wykonanym z substancji organicznych, które mogą ulegać degradacji na polecenie. Argumentuje, że nawet gdy bateria Li-ion zostanie rozebrana, a jej części zostaną odnowione, nadal pozostaną pewne części, których nie da się uratować i staną się odpadem. Akumulator degradowalny, taki jak ten, nad którym pracuje zespół Lutkenhaus, mógłby być bardziej zrównoważonym źródłem energii. Baterie organiczno-radiowe (ORB) istnieją od lat 2000 i funkcjonują dzięki materiałom organicznym, które są syntetyzowane w celu przechowywania i uwalniania elektronów. Zespół wykorzystuje kwas do rozkładu ORB na aminokwasy i inne produkty uboczne, jednak aby części uległy właściwemu rozkładowi, muszą panować odpowiednie warunki. „Odkryliśmy, że kwas w podwyższonej temperaturze działa” mówi Lutkenhause. Przed degradowalną baterią stoi jednak wiele wyzwań. Materiały potrzebne do jej stworzenia są drogie, a ponadto nie jest ona jeszcze w stanie zapewnić takiej ilości energii, jaka jest wymagana w zastosowaniach o dużym zapotrzebowaniu, takich jak pojazdy elektryczne i sieci energetyczne. Segregacja baterii Baterie Li-ion są wykorzystywane do zasilania wielu różnych urządzeń, od laptopów, przez samochody, po sieci energetyczne, a ich skład chemiczny różni się w zależności od celu, czasami znacząco. Powinno to znaleźć odzwierciedlenie w sposobie ich recyklingu. Naukowcy twierdzą, że zakłady recyklingu baterii muszą oddzielnie segregować baterie litowo-jonowe, podobnie jak sortuje się różne rodzaje plastiku podczas recyklingu, aby proces ten był najbardziej efektywny. Na rynek powoli, ale nieuchronnie wkraczają bardziej zrównoważone baterie. Producenci samochodów elektrycznych zaczęli również ponownie wykorzystywać swoje własne akumulatory na wiele różnych sposobów. Na przykład Nissan odnawia stare akumulatory do samochodów Leaf i umieszcza je w zautomatyzowanych pojazdach z napędem, które dostarczają części do jego fabryk. Przyszłe wyzwania Stale rosnące zapotrzebowanie rynku na pojazdy elektryczne sprawia, że firmy z całego przemysłu motoryzacyjnego wydają miliardy dolarów na zwiększenie trwałości akumulatorów Li-ion. Jednak Chiny są obecnie zdecydowanie największym producentem akumulatorów litowo-jonowych. Z kolei wykorzystanie technologii sztucznej inteligencji do odnawiania najbardziej użytecznych części mogłoby pomóc krajom o niewielkich dostawach komponentów do baterii Li-ion, aby nie musiały one tak bardzo polegać na Chinach. Opracowanie nowych baterii, które mogłyby konkurować z bateriami Li, również prawdopodobnie wstrząśnie branżą poprzez stworzenie zdrowej konkurencji. Pojawienie się mniej skomplikowanego, bezpieczniejszego akumulatora, który jest tańszy w produkcji i łatwiejszy do oddzielenia po zakończeniu eksploatacji, stanowi ostateczną odpowiedź na obecny problem zrównoważonego rozwoju pojazdów elektrycznych. Jednak do czasu pojawienia się takiej baterii, standaryzacja recyklingu baterii Li-ion jest znaczącym krokiem we właściwym kierunku – podsumowuje BBC Future.
Łańcuch dostaw baterii dla branży motoryzacyjnej rozwija się w szybkim tempie, na co wpływa rosnąca popularność aut elektrycznych. Według Automotive from Ultimamedia, do 2030 roku 53% sprzedawanych na świecie nowych samochodów będzie w pełni elektryczna lub hybrydowa. Specjaliści GEFCO, operatora logistycznego dla branży motoryzacyjnej, przedstawiają cztery wskazówki w zakresie transportu baterii litowo-jonowych do samochodów elektrycznych. Akumulatory litowo-jonowe mają kluczowe znaczenie dla sukcesu strategii producentów samochodów w odniesieniu do poprawy zasięgu i konkurencyjności cenowej pojazdów elektrycznych (EV). Ponieważ bateria stanowi co najmniej 30% wartości nowego pojazdu, producenci samochodów oraz producenci baterii dążą do poprawy jakości baterii i obniżenia cen do poziomu poniżej 100 dolarów za kilowatogodzinę (kWh), co oznacza, że pojazdy elektryczne mogą konkurować z tradycyjnymi autami z silnikiem spalinowym. Technologia baterii oraz ich ceny to nie jedyne ważne czynniki. Wraz ze wzrostem popytu na pojazdy elektryczne, dla branży motoryzacyjnej szczególnie istotne staje się zarządzanie zakupami i produkcją baterii. Jak podkreślają specjaliści GEFCO, pojawiają się też inne istotne pytania, na przykład, czy podaż nadąży za popytem na baterie w całym łańcuchu dostaw. Baterie litowo-jonowe są klasyfikowane jako towary niebezpieczne, a ich transport jest ściśle regulowany. Mogą być również transportowane jako odpady niebezpieczne i podlegać odrębnym przepisom prawa krajowego lub lokalnego. Dlatego nie mogą być przewożone jako ładunki standardowe. Baterie są wrażliwe na czynniki zewnętrzne, takie jak wysokie temperatury, nadmierna wilgotność i silny wstrząs, co wymaga zwrócenia większej uwagi na kwestie ich pakowania. Przepisy różnią się w zależności od środka transportu oraz kraju, na którego terenie baterie są składowane. Jak bezproblemowo transportować akumulatory litowo-jonowe? Po pierwsze, zadbaj o doskonałe przygotowanie przesyłki, obejmujące kwestię pakowania i dokumentacji. Sprawdź prawidłową identyfikację baterii oraz czy opakowanie spełnia zapisy regulacji o transporcie towarów niebezpiecznych. Jak podkreślają specjaliści GEFCO, należy pamiętać, że metody pakowania różnią się, gdy bateria jest zużyta lub jeśli stanowi znaczne zagrożenie podczas transportu. Ważne jest też oznakowanie i etykietowanie baterii, zgodne z wytycznymi i przekazanie pełnych informacji o towarze. Po drugie, powierz transport zaufanemu operatorowi logistycznemu, który nadzoruje przestrzeganie zasad załadunku, bezpieczeństwa zgodnie z regulacjami o transporcie towarów niebezpiecznych oraz innymi przepisami prawa krajowego. Istotne jest sprawdzenie stanu opakowań przed rozładunkiem i przestrzeganie zasad rozładunku, a dodatkową wartością współpracy z zaufanym operatorem logistycznym jest wiedza branżowa oraz szkolenia. Upewnij się również, że twój partner poradzi sobie z etapem po rozładunku. Należy wziąć pod uwagę możliwość istnienia odrębnych przepisów lokalnych dotyczących bezpiecznego magazynowania baterii, a także inne kwestie, takie jak na przykład wymagania ubezpieczycieli względem towaru. Możliwość śledzenia transportu to kwestia priorytetowa. Transport baterii musi odbywać się przy wykorzystaniu narzędzi do śledzenia towarów w czasie rzeczywistym. Śledzenia wymaga również dokumentacja celna i dla towarów niebezpiecznych. W przypadku wystąpienia zakłóceń wpływających na czas tranzytu, taka informacja powinna natychmiast trafić do najważniejszych osób odpowiedzialnych za transport. Na przykład specjalisty ds. bezpieczeństwa w celu wdrożenia środków wskazanych w przepisach. W sytuacjach awaryjnych ważna jest możliwość interwencji u władz lokalnych czy na przykład zorganizowanie tymczasowego postoju transportu na terenie autoryzowanego operatora 3PL – podkreślają eksperci GEFCO.
Szybkie ładowanie nowoczesnych akumulatorów litowo-jonowych jest możliwe, ale tylko jeśli mamy dostępną odpowiednio dużą mocCzas ładowania akumulatorów skrócił się w ostatnich latach do tego stopnia, że praktycznie niemożliwe staje się wykorzystanie w pełni ich możliwości w pojazdach - ze względu na ograniczoną dostępną moc. Produkowane obecnie akumulatory litowo-jonowe można zazwyczaj naładować do 80% ich pojemności w czasie od 15 do 60 minut, przy czym zaznaczyć należy, że większy prąd ładowania powoduje szybszą degradację akumulatora. Niektórzy producenci, tacy jak Altair Nanotechnologies oraz Toshiba posiadają już opracowane akumulatory, wykorzystujące tytanian litu, które można naładować do 80-90% w mniej niż 5 minut, a do 100% w około 10 minut i to przy zachowaniu żywotności na poziomie 10-15 lat. Obaj wymienieni producenci przymierzają się do komercjalizacji swoich produktów na dużą skalę. Toshiba inwestuje ponad 300 mln USD aby w 2010r. produkować 3 mln ogniw SCiB miesięcznie oraz 10 mln ogniw miesięcznie w 2015r. Tymczasem Altairnano testuje swoje akumulatory w motoryzacji w takich pojazdach jak: Proterra EcoRide BE35, Lightning GT, czy Current Eliminator V. Ogniwo SCiB (Super Charge ion Battery) 4,2 Ah 2,4 V [1] Ogniwo Altairnano 50 Ah 2,3 V [6] Okazuje się jednak, że akumulatory litowo-jonowe można ładować jeszcze szybciej - w sekundy. Dowiedli tego naukowcy z Massachusetts Institute of Technology, którzy zmodyfikowali materiał elektrod LiFePO4, osiągając czas ładowania i rozładowania próbki ogniwa na poziomie 10-20 s. Przy tak krótkich czasach ładowania-rozładowania zaciera się granica między akumulatorami, a superkondensatorami. Artykuł prezentujący dokonanie pracowników MIT ukazał się w marcu 2009r. w prestiżowym czasopiśmie Nature. Bardzo możliwe, że nowa technologia wejdzie do produkcji w ciągu kilku lat. Próbka nowego materiału [7] Naukowcy z MIT przewidują, że nowe akumulatory znajdą zastosowanie w urządzeniach przenośnych. Jednak przy tak krótkich czasach problematyczne wydaje się naładowanie nawet telefonu komórkowego, nie wspominając o laptopie. akumulator BL-5C [10] Teoretyczna moc ładowania telefonu z akumulatorem BL-5C (1020 mAh, 3,7 V, około 3,77 Wh) Czas ładowaniaŚrednia moc ładowania [W] 1 h 3,77 30 min 7,54 15 min 15,08 10 min 22,6 5 min 45,2 1 min 226 20 s 678 10 s 1356 Tabela 1: Teoretyczna moc ładowania telefonu z akumulatorem BL-5C (1020 mAh, 3,7 V, około 3,77 Wh) Jak widać powyżej, ładowanie telefonu komórkowego z akumulatorem BL-5C w 10 s wymagałoby blisko 1,4 kW mocy (bez uwzględniania sprawności procesu) oraz stosowanej ładowarki. Dokonując tych samych obliczeń dla laptopa okaże się, że niezależnie od możliwości akumulatora, nie naładujemy laptopa w minutę dysponując w mieszkaniu zasilaniem 16 A, 230 V, a więc teoretycznie mocą jedynie 3680 W. akumulator Whitenergy [11] Teoretyczna moc ładowania laptopa z akumulatorem Whitenergy (8800 mAh, 11,1 V, około 98 Wh) Czas ładowaniaŚrednia moc ładowania [W] 1 h 98 30 min 196 15 min 392 10 min 588 5 min 1176 1 min 5880 20 s 17640 10 s 35280 Tabela 2: Teoretyczna moc ładowania laptopa z akumulatorem Whitenergy (8800 mAh, 11,1 V, około 98 Wh) Z powyższych obliczeń wynika, że tylko najmniejsze urządzenia przenośne będą mogły w przyszłości wykorzystywać nowe akumulatory do ładowania w przeciągu sekund. W przypadku laptopów, niezasadne wydaje się schodzenie z czasem ładowania poniżej 5 minut ze względu na zbyt dużą moc. Ponadto do ładowania w ciągu 5-10 minut wystarczą w zupełności akumulatory SCiB Toshiby. A co z pojazdami? Czy one będą mogły być kiedykolwiek ładowane w przeciągu sekund? Nie. A przynajmniej nie w przewidywalnej przyszłości. Spójrzmy jak wyglądają tabele dla trzech przykładowych pojazdów: ELMOTO HR-2 Teoretyczna moc ładowania akumulatora w lekkim motocyklu ELMOTO HR-2 (1,2 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 1,2 30 min 2,4 15 min 4,8 10 min 7,2 5 min 14,4 1 min 72 20 s 216 10 s 432 Tabela 3: Teoretyczna moc ładowania akumulatora w lekkim motocyklu ELMOTO HR-2 (1,2 kWh) Mitsubishi i-MiEV Teoretyczna moc ładowania akumulatora w samochodzie Mitsubishi i-MiEV (16 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 16 30 min 32 15 min 64 10 min 96 5 min 192 1 min 960 20 s 2880 10 s 5760 Tabela 4: Teoretyczna moc ładowania akumulatora w samochodzie Mitsubishi i-MiEV (16 kWh) Tesla Model S Teoretyczna moc ładowania akumulatora w samochodzie Tesla Model S (70 kWh) Czas ładowaniaŚrednia moc ładowania [kW] 1 h 70 30 min 140 15 min 280 10 min 420 5 min 840 1 min 4200 20 s 12600 10 s 25200 Tabela 5: Teoretyczna moc ładowania akumulatora w samochodzie Tesla Model S (70 kWh) Analizując powyższe wyniki można stwierdzić, że ładowanie pojazdów elektrycznych w ciągu sekund to czysta abstrakcja. Nawet najmniejszy pojazd ELMOTO HR-2 potrzebuje 72 kW, żeby naładować się w minutę i to wciąż bez uwzględniania sprawności ładowarki. Jeśli chodzi o Mitsubishi i-MiEV to do ładowania w przeciągu minuty potrzebujemy już ponad 1 MW mocy. Tesla Model S potrzebowałaby natomiast ponad 4,2 MW mocy, aby uzupełnić energię w minutę. Wydaje się zatem, że odkrycie naukowców z MIT nie będzie miało żadnego znaczenia dla pojazdów elektrycznych i hybrydowych. Akumulator, który można naładować w sekundy to rzecz zdecydowanie wyprzedzająca swój czas. Niemniej jednak należy mieć nadzieję, że opracowanie akumulatorów, posiadających zdolność ładowania i rozładowywania w 10-20 s, zaowocuje zwiększeniem ich trwałości przy dłuższych czasach, rzędu kilkudziesięciu minut.
Baterie mają kluczowe znaczenie w globalnej transformacji gospodarczej ze względu na ich zdolność do zachowania równowagi między podażą a popytem na energię elektryczną. Podstawą dekarbonizacji świata i walki ze zmianami klimatu jest elektryfikacja zasilana przez odnawialne źródła energii, w tym elektryfikacja samochodów (e-mobilność), budynków i miast. Sposobem osiągnięcia ekologicznej gospodarki jest zwiększenie wykorzystania energii słonecznej, wiatrowej, wodnej i innych technologii niskoemisyjnych, takich jak samochody elektryczne, systemy magazynowania energii oraz wykorzystanie mikrosieci i inteligentnych sieci. Elektryfikacja może przyczynić się do zatrzymania globalnego ocieplenia poprzez wyeliminowanie z otoczenia gazów cieplarnianych. Akumulatory są jednym z kluczowych źródeł energii w zrównoważonej przyszłości energetycznej, dlatego warto przyjrzeć się ich znaczeniu i zastosowaniom. Przedstawimy niektóre z produktów RND – marki, która zapewnia klientom kompleksowy asortyment produktów elektronicznych, elektrycznych i konserwacyjnych w atrakcyjnych cenach. Zaproponujemy również produkty marki Hy-Line, która również oferuje innowacyjne technologie w konkurencyjnych cenach. Akumulatorowe systemy magazynowania energii – baterie litowo-jonowe Ze względu na rosnące zapotrzebowanie na technologie zapewniające czystą energię, takie jak akumulatory, turbiny wiatrowe, panele słoneczne czy pojazdy elektryczne, przewiduje się, że wydobycie minerałów litu, kobaltu i grafitu ogromnie wzrośnie. Obecny postęp technologiczny i inicjatywy mające na celu elektryfikację gospodarki polegają w dużej mierze na bateriach litowo-jonowych (Li-ion). Ze względu na swoją wyższą wydajność, efektywność i bezpieczeństwo w porównaniu do tradycyjnych baterii, stały się one preferowanym źródłem zasilania większości samochodów elektrycznych. Szybka reakcja, modułowa konstrukcja i możliwość dostosowania instalacji akumulatorów umożliwiają dekarbonizację przemysłu transportowego i rosnącą integrację sieci z niestabilnymi technologiami energii odnawialnej. Katoda (elektroda dodatnia), anoda (elektroda ujemna) i elektrolit służą jako przewodniki w bateriach litowo-jonowych. Ten typ baterii jest obecnie wykorzystywany w wielu urządzeniach, od telefonów komórkowych i komputerów po samochody elektryczne. Baterie te są znacznie lżejsze, mniejsze i lepiej utrzymują ładunek niż wcześniejsze wersje akumulatorów. Co więcej, na całym świecie koszty akumulatorów szybko spadają. Jak podaje IRENA (Międzynarodowa Agencja Energii Odnawialnej), na przykład w Niemczech koszty baterii Li-ion stosowanych w małych gospodarstwach domowych spadły o ponad 60% od końca 2014 roku. Rola akumulatorów w systemach magazynowania energii Dzięki akumulatorom przedsiębiorstwa użyteczności publicznej i operatorzy sieci mogą zapewnić niezawodność systemu elektrycznego, wypełniając luki pozostawione przez zmienną wydajność elektrowni wiatrowych i słonecznych oraz zapobiegając marnowaniu nadmiaru energii. Według organizacji IRENA, oprócz reagowania na zmiany częstotliwości, zapewnienia rezerwy mocy, możliwości rozruchu autonomicznego (przywrócenia systemu elektroenergetycznego) i innych funkcji sieciowych, systemy akumulatorowe mogą również przyczyniać się do unowocześniania minisieci, zapewnienia samowystarczalności budynków. Jest to możliwe dzięki wykorzystaniu energii z paneli słonecznych oraz przechowywaniu energii elektrycznej w pojazdach elektrycznych. Magazynowanie energii Wykorzystanie akumulatorów w energetyce odnawialnej jest szczególnie ważne, ponieważ energia słoneczna i wiatrowa to wciąż niestabilne źródła, które produkują zmienne ilości energii. Akumulatory pozwalają na przechowywanie i wykorzystywanie jej w bardziej ekonomiczny sposób, w przypadku braku wiatru lub słońca. Jak podaje Komisja Europejska, to właśnie baterie, które są technologią magazynowania o najszybszym tempie wzrostu, będą miały kluczowe znaczenie dla osiągnięcia unijnego celu 55% redukcji emisji gazów cieplarnianych do 2030 roku. Transport (e-mobilność) Przewiduje się, że w najblizszych latach liczba pojazdów zasilanych bateriami znacznie wzrośnie. Pojazdy elektryczne i zasilające je akumulatory przyczyniają się nie tylko do eliminacji paliw kopalnych, ale także do zwiększenia ilości niestabilnej energii odnawialnej w systemach sieciowych. Ponieważ akumulatory pozwalają na długoterminowe magazynowanie energii, możliwe jest, że podaż energii odnawialnej przewyższy zapotrzebowanie na energię elektryczną z sieci w dni szczególnie słoneczne lub wietrzne. Akumulatory litowo-jonowe stały w ciągu ostatnich dwóch dekad najczęściej stosowanymi akumulatorami do zasilania pojazdów elektrycznych. Według Światowego Forum Ekonomicznego, zapotrzebowanie na baterie litowo-jonowe do zasilania pojazdów elektrycznych i magazynowania energii gwałtownie wzrosło, z około 0,5 GWh w 2010 roku do prawie 526 GWh dekadę później. Dowiedz się więcej o najczęściej używanych bateriach EV tutaj. Elektryfikacja jest głównym elementem dekarbonizacji transportu. Zgodnie z założeniami planów 2030 Net Zero, wszystkie nowe lekkie pojazdy powinny emitować zero zanieczyszczeń. Jednak nie wszystkie państwa wyznaczają takie same cele. W naszym Indeksie gotowości na pojazdy elektryczne możesz sprawdzić, jak postępy w elektryfikacji pojazdów przebiegają w poszczególnych krajach. Magazynowanie energii w sieci Pojazdy elektryczne będą wykorzystywane nie tylko do transportu, ale także obniżą koszty energii elektrycznej dla tych, którzy zaopatrzyli się w dachowe panele słoneczne, niezależnie od tego, czy są to inwestorzy publiczni, korporacyjni czy indywidualni. Przy wysokich stawkach za energię elektryczną, prąd z akumulatorów zaparkowanych samochodów można wykorzystać do celów domowych lub nawet sprzedać do sieci. Dowiedz się więcej o mikrosieciach elektroenergetycznych i ich roli w zapewnieniu przyszłej autonomii energetycznej. Akumulatory Wszystkie baterie wyrzucane na wysypiska śmieci wydzielają toksyczne pierwiastki, takie jak rtęć, ołów i kadm, zanieczyszczając glebę i wodę. Akumulatory są znacznie mniej szkodliwe dla środowiska, ponieważ dzięki nim produkuje się mniejszą ilość baterii. Jeden akumulator może zastąpić tysiące jednorazowych ofercie RND Power znajduje się szeroka gama zasilaczy, przetwornic AC/DC, ładowarek, akumulatorów i wielu innych artykułów elektronicznych. Na przykład, akumulatory kwasowo-ołowiowe RND dostępne w wielu rozmiarach i napięciach są najbardziej ekologiczną technologią akumulatorową. Zazwyczaj są wykonane z ponad 90% materiałów pochodzących z recyklingu akumulatorów ołowiowych, co sprawia, że ta technologia magazynowania energii ma najmniejszy wpływ na środowisko. Akumulatory kwasowo-ołowiowe, RND Ładowarki do akumulatorów, RND Ładowarka do akumulatorów, kwasowo-ołowiowa, RND Power Akumulatorki, RND Akumulatory HY-Line pozwalają na monitorowanie wielu istotnych parametrów akumulatora. Dzięki akumulatorom HY-Di można monitorować akumulatory litowo-jonowe z dowolnego miejsca i w dowolnym czasie za pośrednictwem Internetu. Jest to możliwe dzięki magistrali SM- lub CAN oraz specjalnemu interfejsowi HY-Di Battery Interface (HBI) dostępnemu z poziomu przeglądarki internetowej. Inteligentne akumulatory litowo-jonowe, HY-Di, HY-Line Inteligentna ładowarka do akumulatorów HY-Di Przyszłość zelektryfikowanego świata Mówi się, że przyszłość jest elektryczna. Nie ulega wątpliwości, że już niedługo świat będzie w większości lub nawet w całości zasilany elektrycznie. Ze względu na rosnące zapotrzebowanie na baterie konieczne są sposoby obniżenia kosztów ich wytwarzania, dzięki czemu światowa produkcja baterii i technologii elektrycznych zaspokajałaby popyt. Aby to osiągnąć, konieczny jest sposób na obniżenie ilości metali niezbędnych do produkcji baterii. Metale te są często drogie i trudne do pozyskania, a co więcej ich wydobycie ma negatywny wpływ na środowisko. Aby zielona transformacja stała się możliwa, należy postawić na recykling, w tym usprawnić recykling baterii. Najczęściej zadawane pytania Dlaczego akumulatory są ważne z punktu widzenia energii odnawialnej?Akumulatory są głównym sposobem przechowywania energii odnawialnej. Tymczasem ich rozwój wyraźnie nie nadąża za rozwojem energetyki wiatrowej i słonecznej, mimo że bez baterii technologie te działają z ograniczoną wydajnością. Dzięki akumulatorom można gromadzić dodatkową energię elektryczną i przechowywać ją w okresach pogorszenia pogody. Jaką rolę odgrywają akumulatory w wykorzystaniu odnawialnych źródeł energii, takich jak energia słoneczna i wiatrowa?Podczas korzystania z odnawialnych źródeł akumulatory umożliwiają dostawcom energii elektrycznej gromadzenie dodatkowej energii i przechowywanie jej w okresach, gdy panele słoneczne i turbiny wiatrowe nie są wystarczająco wydajne. Dlaczego akumulatory są istotne w przejściu do systemu energetycznego o zerowej emisji dwutlenku węgla netto?Proces przechodzenia na bardziej ekologiczne rozwiązania skoncentruje się na odnawialnych źródłach energii – produkowana w ten sposób energia najczęściej jest magazynowana w akumulatorach. Ze względu na postępy w technologii akumulatorów, stają się one kluczowym elementem zrównoważonego transportu przyszłości. Co więcej, energia zgromadzona w akumulatorach samochodowych może być wykorzystana zarówno do zasilania domu, jak i do stabilizacji sieci. Jakie akumulatory są wykorzystywane w energetyce odnawialnej?Obecnie najbardziej rozpowszechnione są akumulatory kwasowo-ołowiowe i litowo-jonowe o głębokim cyklu rozładowania. Stanowią one dwa najważniejsze rozwiązania w zakresie przechowywania energii odnawialnej. Dlaczego technologia akumulatorów jest tak ważna w kontekście samochodów elektrycznych?Akumulator w pojeździe elektrycznym to urządzenie gromadzące energię, która jest dostarczana do silnika za pomocą prądu zmiennego lub ciągłego. Ponieważ pojazdy elektryczne wykorzystują akumulatory zamiast paliw kopalnych, stały się bardziej zrównoważonym środkiem transportu. Jakie akumulatory są stosowane w samochodach elektrycznych?Pojazdy całkowicie elektryczne, hybrydowe pojazdy elektryczne typu plug-in (PHEV) oraz hybrydowe pojazdy elektryczne wymagają technologii magazynowania energii, najczęściej akumulatorów (HEV). W hybrydach typu plug-in i pojazdach całkowicie elektrycznych zwykle spotykane są akumulatory litowo-jonowe. Jak akumulatory przechowują energię?Akumulator to rodzaj zbiornika energii, który przechowuje energię chemiczną, aby później przekształcić ją w energię elektryczną. W każdym akumulatorze znajduje się jedno lub więcej ogniw elektrochemicznych. Wewnątrz takich ogniw zachodzą reakcje chemiczne, powodujące przepływ elektronów w obwodzie. W ten sposób powstaje prąd elektryczny. Jak wykorzystuje się energię z akumulatorów?Akumulator to urządzenie, które przechowuje energię chemiczną i przekształca ją w energię elektryczną. Podczas reakcji chemicznych zachodzących w akumulatorach elektrony przemieszczają się z jednej substancji (elektrody) do drugiej poprzez zewnętrzny obwód. Prąd elektryczny może być tworzony przez przepływ elektronów i wykorzystywany do realizacji określonych zadań. Czy akumulatory są odnawialnym źródłem energii?Pomimo tego, że korozja baterii uwalnia substancje chemiczne, które zanieczyszczają wody gruntowe i powierzchniowe, a także glebę, akumulatory można wykorzystywać wielokrotnie. Jeden akumulator może zastąpić tysiące jednorazowych baterii, dlatego też akumulatorki skutecznie obniżają emisję dwutlenku węgla. Czy baterie są poddawane recyklingowi?Baterie jednorazowe lub wielokrotnego użytku, takie jak baterie guzikowe i litowe, mogą być poddawane recyklingowi, jednak dostęp do punktów recyklingu nie wszędzie jest możliwy. Niektóre baterie są poddawane recyklingowi częściej niż inne. Prawie 90% wszystkich baterii kwasowo-ołowiowych jest poddawanych recyklingowi. Czy akumulatory kwasowo-ołowiowe są zrównoważonym źródłem energii?Ze względu na zamknięty cykl życia i możliwość wielokrotnego użycia, akumulatory kwasowo-ołowiowe są zrównoważonym rozwiązaniem. Zużyty akumulator samochodowy trafia do autoryzowanego zakładu recyklingu, gdzie wszystkie części są odzyskiwane, poddawane recyklingowi i sprzedawane producentom akumulatorów. Akumulatory samochodowe mogą być poddawane recyklingowi w nieskończoność. Należy jednak pamiętać, że w przypadku niewłaściwej utylizacji akumulatory kwasowo-ołowiowe mogą być niebezpieczne zarówno dla zdrowia ludzi, jak i dla środowiska.
baterie litowo jonowe do samochodów elektrycznych